Skip to Content
SDK ReferenceUser Client

User Client

The UserClient is a user-scoped client returned by client.for_user(). All memory operations are automatically scoped to this user.

Creating a user client

user = client.for_user("user-123")

Methods

remember(content)

Store content as memory. Automatically extracts entities and relationships.

# Simple text result = user.remember("Alice is a software engineer who uses Python") # Multiple items result = user.remember(["First fact", "Second fact"]) # Document object from memorer import Document result = user.remember(Document(content="...", metadata={"source": "chat"}))
ParameterTypeDescription
contentstr | dict | Document | listContent to remember. Accepts a string, dict with content key, Document object, or a list of any of these

Returns: IngestResponse with fields:

  • entities_created — Number of entities extracted
  • relationships_created — Number of relationships created
  • episodes_created — Number of temporal episodes created
  • processing_time_ms — Processing time in milliseconds
  • status"success"

recall(query, **kwargs)

Query memory using semantic similarity and optional graph reasoning.

results = user.recall("What does Alice do?") print(results.context) # Assembled context string for LLM prompts for r in results: print(f"{r.content} (score: {r.relevance_score})")
ParameterTypeDefaultDescription
querystrNatural language search query
top_kint10Maximum number of results
use_emotional_rankingboolTrueApply emotional scoring
use_graph_reasoningboolFalseEnable multi-hop graph traversal
graph_max_hopsint3Maximum traversal depth

Returns: QueryResponse — iterable of QueryResult objects with a .context property containing assembled text for LLM prompts.

forget(memory_id)

Soft-delete a specific memory.

user.forget("memory-uuid-here")

conversation(session_id)

Get or create a conversation session.

# Create a new conversation conv = user.conversation() # Resume an existing conversation conv = user.conversation("existing-conversation-id") conv.add("user", "Hello!") result = conv.recall("what did we talk about?")
ParameterTypeDefaultDescription
session_idstr | NoneNoneConversation ID. If None, creates a new conversation

Returns: ConversationClient

Resource Attributes

PropertyTypeDescription
user.knowledgeKnowledgeResourceKnowledge graph query and ingestion
user.memoriesMemoriesResourceMemory CRUD and stats
user.entitiesEntitiesResourceEntity management
user.conversationsConversationsResourceConversation session management
Last updated on